1.Introduction


I will show that x1^k+x2^k+x3^k+x4^k+x5^k+x6^k = y1^k+y2^k+y3^k+y4^k+y5^k+y6^k   
for k=1,3,5,7 has infinetly many integer solutions.

I used following Piezas's identity and Theorem.

Piezas's identity.([1])

(c+bp+aq)^k + (c-bp-aq)^k + (d+ap-bq)^k + (d-ap+bq)^k  = (c+bp-aq)^k + (c-bp+aq)^k + (d+ap+bq)^k + (d-ap-bq)^k,
for k=2,4,6, where (4q^2-p^2)b^2+(4p^2-q^2)a^2=15c^2 and (4p^2-q^2)b^2+(4q^2-p^2)a^2=15d^2.


Theorem

If a1^k+a2^k+....+am^k = b1^k+b2^k+....+bm^k,for k=2,4,...2n,then

(T+a1)^k+(T+a2)^k+...+(T+am)^k,(T-a1)^k+(T-a2)^k+...+(T-am)^k =

(T+b1)^k+(T+b2)^k+...+(T+bm)^k,(T-b1)^k+(T-b2)^k+...+(T-bm)^k,
for k=1,2,3,...2n+1, where T is arbitrary integer.









2.Theorem

  x1^k+x2^k+x3^k+x4^k+x5^k+x6^k = y1^k+y2^k+y3^k+y4^k+y5^k+y6^k
  for k=1,3,5,7 has infinetly many solutions,
  where (4q^2-p^2)b^2+(4p^2-q^2)a^2 = 15c^2 and (4p^2-q^2)b^2+(4q^2-p^2)a^2 = 15d^2.
  
        x1=-c+d+ap-bq       y1=-c+d+ap+bq
        x2=-c+d-ap+bq       y2=-c+d-ap-bq
        x3=-2c-bp-aq        y3=-2c-bp+aq
        x4=-2c+bp+aq        y4=-2c+bp-aq
        x5=-c-d-ap+bq       y5=-c-d-ap-bq
        x6=-c-d+ap-bq       y6=-c-d+ap+bq

     
     
Proof.

x1^k+x2^k+x3^k+x4^k+x5^k+x6^k = y1^k+y2^k+y3^k+y4^k+y5^k+y6^k................(1)

Let [a1,a2,...,am]=[b1,b2,...,bm](k=1,2,...,n) denote a1^k+a2^k+....+am^k = b1^k+b2^k+....+bm^k(k=1,2,...,n).

First we apply Piezas's identity to above Theorem, we obtain 


[T+c+bp+aq, T+c-bp-aq, T+d+ap-bq, T+d-ap+bq, T-c-bp-aq, T-c+bp+aq, T-d-ap+bq, T-d+ap-bq]^k =

[T+c+bp-aq, T+c-bp+aq, T+d+ap+bq, T+d-ap-bq, T-c-bp+aq, T-c+bp-aq, T-d-ap-bq, T-d+ap+bq]^k,for k=1,3,5,7,
where (4q^2-p^2)b^2+(4p^2-q^2)a^2=15c^2 and (4p^2-q^2)b^2+(4q^2-p^2)a^2=15d^2.

Here, set T=-c, we can reduce four terms and obtain


[-c+d+ap-bq, -c+d-ap+bq, -2c-bp-aq, -2c+bp+aq, -c-d-ap+bq, -c-d+ap-bq]^k =

[-c+d+ap+bq, -c+d-ap-bq, -2c-bp+aq, -2c+bp-aq, -c-d-ap-bq, -c-d+ap+bq]^k, for k=1,3,5,7,

where (4q^2-p^2)b^2+(4p^2-q^2)a^2=15c^2 and (4p^2-q^2)b^2+(4q^2-p^2)a^2=15d^2.

By transform simultaneous equation {(4q^2-p^2)b^2+(4p^2-q^2)a^2=15c^2 , (4p^2-q^2)b^2+(4q^2-p^2)a^2=15d^2} to an elliptic curve,
we can prove the infinity of the solutions of this equation.

Since Piezas's identity has infinetly many integer solutions,
this identity also has infinetly many integer solutions.


Q.E.D.@
 
@@                  
       
3.Examples


 (p,q)=(3,2)

    [-c+d+3a-2b, -c+d-3a+2b, -2c-3b-2a, -2c+3b+2a, -c-d-3a+2b, -c-d+3a-2b]^k =

    [-c+d+3a+2b, -c+d-3a-2b, -2c-3b+2a, -2c+3b-2a, -c-d-3a-2b, -c-d+3a+2b]^k

    for k=1,3,5,7, where 7b^2+32a^2=15c^2 and  32b^2+7a^2=15d^2.

    Numeric example,
    {a,b,c,d}={1,13,9,19}: [ -13, 33, -59, 23, -5, -51]^k = [ 39, -19, -55, 19, -57, 1]^k
    {a,b,c,d}={466,607, 797,942}: [ 329, -39,-4347,1159,-1923,-1555]^k = [2757,-2467,-2483,-705,-4351,873]^k
    {a,b,c,d}={607,466, 942,797}: [ 372, -517,-2248, 364,-1314, -425]^k = [ 1304,-1449,-1034, -850,-2246, 507]^k 



 (p,q)=(4,1)

   [-c+d+4a-b, -c+d-4a+b, -2c-4b-a, -2c+4b+a, -c-d-4a+b, -c-d+4a-b]^k =

   [-c+d+4a+b, -c+d-4a-b, -2c-4b+a, -2c+4b-a, -c-d-4a-b, -c-d+4a+b]^k

   for k=1,3,5,7, where -12b^2+63a^2=15c^2 and  63b^2-12a^2=15d^2.

   {a,b,c,d}={89,82,167,148}: [255, -293, -751, 83, -589, -41]^k = [ 419, -457, -573, -95, -753, 123]^k
   {a,b,c,d}={82,89,148,167}: [129, -110, -367, 71, -277, -38]^k = [ 218, -199, -285, -11, -366, 51]^k






4.References

[1].Tito Piezas:http://sites.google.com/site/tpiezas/025





 














HOME