1.Introduction

2010.4.11:  Add   New solutions 

Thank you  Mr.Jacobi.

He sent to me three solutions and one of them is a new solution.

Q=(k,Y) denotes the solution of (7).

Case 1. Q1=(46824943333 / 7233418750, -90519417593095489212844200389 / 46379919612500)

This solution gives a new solution(found by Lee Jacobi).

a = 4625798910,b = 46140636,c = 3744195265,d = -3172936050,e = 5243198761

Case 2. Q2=(1176017269462 / 440979965625, 109096878379234607793726950343916 / 172377467109253125)

This gives a 13 digit solution.

a=1058103081810, b=535945811334, c=-1140105961325, d=944080652640, e=1398023584459



I searched other solutions by using above two solutions Q1 and Q2.

First,convert the quartic solution to Weierstrass' one.

Next,generate some points of Weierstrass type curve by group law using p1 and p2.

p1=[862434907008475079082/898620529, -21281839968736771109964348820557/26937947597833]
p2=[286244140671159992513418/141706320721, 157502776841350834590549211749970749/53343785665892519]

Two new solutions were found where digit < 50.

27 digit solution: -p1+ p2=[1180574750827, -1240480222676161515]

a= 756005932676079581480132094
b= 254919457795946854721610090
c= 644145677060583739541816400
d= -718471658211690720060678365
e= 936599409320919455682880219

32 digit solution: p1-p2=[1180574750827, 1240479042101410688]

a= 47889177339639353814221283135714
b= -6535571193228450354843506097540
c= -26485662193954085869452902545110
d= 38071142693337417804472545034525
e= 52939086645794235394397419527589



2010.4.2:  Add   About transform quartic for to minimal Weierstrass form 

v^2=a*u^4+ b*u^3+ c*u^2+ d*u+ q^2--------> y^2+ a1*x*y+ a3*y = x^3+ a2*x^2+ a4*x +a6

First,we convert quartic to general Weierstrass form.

a1=d/q
a2=c-d^2/(4*q^2)
a3=2*q*b
a4=-4*q^2*a
a6=a*(d^2-4*q^2*c)

Substitute (a,b,c,d) to above convert form, we get
a1=129515154647285940/107
a2=-3946980368620254607138031941804008/11449
a3=354038064243767383338165499234355722500000
a4=-85551237005682176137274966636751507756798140625000000
a6=29493322820561289419204683782659854018385436191238340136057194420402433625000000000.

Next,we convert general form to standard reduced form.
I used PARI-GP(Package for number theory) as following.
I think PARI-GP is very convenient tool.
We can get a minimal form by using command "ellinit" and "ellminimalmodel".

e=ellinit([129515154647285940/107,-3946980368620254607138031941804008/11449,354038064243767383338165499234355722500000,-85551237005682176137274966636751507756798140625000000,29493322820561289419204683782659854018385436191238340136057194420402433625000000000]);
L1=ellminimalmodel(e,&v);

The vector v=[u,r,s,t] is outputted.
v=[96269732, -7178602271156816577346851192, -64757572173212308/107, 445927855213075033059760770402213392773170240/107]
v : Changing an old and new coodinate.
x=u^2*x1+r, y=u^3*y1+s*u^2*x1+t,(x1,y1) are the new coodinates.
First component of L1 is [1, -1, 0, 693712100835217413098595, -925623290959491513363159202180191099].
This is minimal Weierstrass form!





2009.7.30:  Add  4.Table of Solutions.

I knew in July that Jacobi and Madden[1] had already proved the infinity of the solution
for a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4. 

The feature of their methods is to use a known solution well. 

They used a=5400,b=1770,c=-2634,d=955 as a known solution.
 
I proved the infinity of the solution by using a known solution which is different from them,
and found some new solutions.

I used a=48150, b=-31764, c=27385, d=7590 as a known solution.

My method almost depends on their method.

[1]:Lee W. Jacobi and Daniel J. Madden, On a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4, Amer. Math. Monthly 115 (2008) 220-236. 



2. a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4 has infinetly many solutions


  
Proof.

     Assume that a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4.

     We use identity a^4 + b^4 + (a + b)^4 = 2(a^2 + ab + b^2)^2.
   
     So, a^4 + b^4 + (a + b)^4 + c^4 + d^4 + (c +d )^4 = a + b)^4 + (c +d )^4 + (a+b+c+d)^4.

     (a^2 + ab + b^2)^2 + (c^2 + c*d + d^2)^2 = ( (a + b)^2 + (a + b)(c + d) + (c + d)^2 )^2

     We obtain 

     c^2 + cd + d^2 = m( (a + b)^2 + (a + b)(c + d) + (c + d)^2 -a^2 -ab -b^2) ..........(1)
     c^2 + cd + d^2 = 1/m( (a + b)^2 + (a + b)(c + d) + (c + d)^2 +a^2 +ab +b^2) ........(2)

     We use a known soulution to determine the value of m.

     48150^4 + (-31764)^4 + 27385^4 + 7590^4 = 51361^4 (Wroblewski)

     Set a0= 48150, b0= -31764, c0= 27385, d0= 7590 and substitute to (1).

     We get m=1807/475.

     To find the solution easy to obtain, we convert the variables.
 
     a = 2z + 2w
     b = 2z - 2w
     c = -x - y - z
     d = x - y - z

     (1),(2) become to follwing equation.

     -5979*z^2 + 1807*x^2 + 3521*y^2 + 10842*y*z - 1900*w^2 = 0 ................(3)

     1425*z^2 + 475*x^2 - 5803*y^2 + 2850*y*z + 7228*w^2 = 0 ...................(4)


     5415000*z^2 - 12158496*y^2 + 13963496*w^2 = 0 .............................(5)

     To find a parametric solution of (5),we use a known solution (y0,w0,z0) = (-21584, 39957/2, 8193/2).

     
     y = -2/2103*(256310000*k^2+575502144+97291875*k)...........................(6)

     z = 1/13319*(616181875*k^2+1383535524+14579387648*k)

     w = 225625*k^2 - 506604

     Substitute x,y,z of (6) to (3),then we get a quartic equation. 

     Y^2 = 65133101042606285634765625*k^4 + 9768720608022511028587687500*k^3
         + 21535806813463498836066039708*k^2 + 21934062869392293305824429200*k 
         + 328370811600539078296707600..........................................(7)

     Y = 72202299x


     Transform (7) to minimal Weierstrass form (8).

     V^2 + UV = U^3 - U^2 + 693712100835217413098595U - 925623290959491513363159202180191099...(8)
   
     We get a point P(U,V) = (434746275961695834/11449, -286717775104047608841677439/1225043)

     As this point on the curve (8) does not have intger coordinates,
     there are infinitely many rational points on the curve (8) by Nagell-Lutz theorem.

     Point 2P(U,V)=(5271161734852323519690712493513646148559824171/555979487782184246211680800056025,
              -383967827631115132325778408795184936425282259780975975668812642463671/13109561148524541584110100733586619386486747620125)

     k = 168657435152101942314450/1324296399347803844274341

     Y = -287049884891605933917141949569922910223374378499787229457540/4858063582619274122389752417972653863736484721

     x = -52951463732080046839539190106977109430616930178894526740/64704548856906112036109112454977776811106239998999

     Substitute k,x to (6),then we get

     y = -1917478095003366256203494101507639824416863283782973716/3405502571416111159795216444998830358479275789421

     z = 15790193338970706807327361229639263827375066043128677904/64704548856906112036109112454977776811106239998999

     w = -2443336111689201327548087382875038165845183854034984/4858063582619274122389752417972653863736484721

     We get a new solution.
     
     a = -99205298414251164662846807108945267922382794305394

     b = 286217560523954682289956279947366565354401483969850

     c = 217902012809334210448629156518650668768393853565040

     d = -95665174177424955524433769002923042240304835226765

     a+b+c+d = 309249100741612772551304860354148923960107708002731
      

     We can obtain infinitely many integer solutions of a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4 by apllying the group law.


    Q.E.D.



3. Small New Solutions

    (b + c + d)(a + c + d) = p*t^2
    (a + b + d)(a + b + c) = p*r^2/2
    a*b + a*c + a*d + b*c + b*d + c*d = -p*r*t .................................(9)

    Change the variables by (10).

    a =-2A + B + C + D
    b = A  -2B + C + D
    c = A  + B -2C + D
    d = A  + B + C -2D .........................................................(10)

    (9) becomes to (11).

    A*B = p*t^2
    C*D = p*r^2/2
    A*B + A*C + A*D + B*C + B*D + C*D - A^2 - B^2 - C^2 - D^2 = -3p*r*t ........(11)

    We use a known solution again.

    a0 = 48150, b0 = -31764, c0 = 27385, d0 = 7590

    A0 = b0 + c0 + d0 = 3211 = (13)^2*(19)

    B0 = a0 + c0 + d0 = 83125 = (5)^4*(7)*(19)

    C0 = a0 + b0 + d0 = 23976 = (2)^3*(3)^4*(37)

    D0 = a0 + b0 + c0 = 43771 = (7)*(13)^2*(37)

    Set

    A = p1*t1*t2^2
    B = p2*t1*t3^2
    C = p1*r1*r3^2/2
    D = p2*r1*r2^2 .............................................................(12)

    Substitute (12) to (11),then (11) becomes to (13).

    We obtain the equation similar to their lemma4.

    4*p1*t1^2*t2^2*p2*t3^2 + 2*p1^2*t1*t2^2*r1*r3^2 + 4*p1*t1*t2^2*p2*r1*r2^2 + 2*p2*t1*t3^2*p1*r1*r3^2
    +4*p2^2*t1*t3^2*r1*r2^2 + 2*p1*r1^2*r3^2*p2*r2^2 - 4*p1^2*t1^2*t2^4 - 4*p2^2*t1^2*t3^4
    -p1^2*r1^2*r3^4 - 4*p2^2*r1^2*r2^4 + 12*p1*p2*r1*r2*r3*t1*t2*t3 = 0 ............(13)


    a = -4*p1*t1*t2^2+2*p2*t1*t3^2+p1*r1*r3^2+2*p2*r1*r2^2

    b = 2*p1*t1*t2^2-4*p2*t1*t3^2+p1*r1*r3^2+2*p2*r1*r2^2

    c = 2*p1*t1*t2^2+2*p2*t1*t3^2-2*p1*r1*r3^2+2*p2*r1*r2^2

    d = 2*p1*t1*t2^2+2*p2*t1*t3^2+p1*r1*r3^2-4*p2*r1*r2^2 ......................(14)

    Define L4(p1,p2,r1,r2,r3,t1,t2,t3) with Left hand side of (13).

    It is understood that L4(1, 7, 37, 13, 36, 19, 13, 25) = 0 by the values of A0, B0, C0 and D0.
    
    L4(p1, 7, 37, 13, 36, 19, 13, 25) = 2032688644*p1^2 -22781495408*p1 + 20748806764 = 0

    Above solution are 1 and 741028813/72596023.

    So, L4(741028813/72596023, 7, 37, 13, 36, 19, 13, 25) = 0

    We get a new solution by using (14).
   
    a = 1058103081810 
    b = 535945811334 
    c = -1140105961325
    d = 944080652640 
    a+b+c+d =1398023584459
   




    L4(1, 7, r1, 13, 36, 19, 13, 25) = 4211236*r1^2  - 875076464*r1 + 26612647084 = 0

    Above solution are 37 and 9463957/55411.

    So, L4(1, 7, 9463957/55411, 13, 36, 19, 13, 25) = 0


    In the same way,we get a new solution by using (14).
   
    a = 378573600
    b = 145514934
    c = 65167315
    d = -201317790
    a+b+c+d = 387938059
    

    This solution is smaller than Jacobi and Madden's one.


4. Table of Solutions



abcda+b+c+dDiscoverer
5400 -2634 1770 955 5491Brudno
1964
48150 -31764 27385 7590 51361Jaroslaw Wroblewski
1338058950 -89913570 504106884 -404747255 1347505009Jacobi-Madden
2008
3095408880 1655829870 -157072326 -1406590625 3187575799Jacobi-Madden
2008
4625798910 46140636 3744195265 -3172936050 5243198761Jacobi
2010
115711769730-64829623500 10424211666 58931380645120237738541Jacobi-Madden
2008
65839853029653125119
989570
-2344554049955763482
9062920
13576788496021617746
750526
10170481573786789344
081475
66141582599903897381
758651
Jacobi-Madden
2008
23386662965142418709
2091730
14414475289412269061
9290650
-8205735876023550873
3782724
-5313492406384356182
6924255
24281909972146780715
0675401
Jacobi-Madden
2008
28653793324729854441
97526070
-4244724647017458654
32372850
11559123698010568095
49486884
-7096774875862844712
68805095
28871417499860119170
45835009
Jacobi-Madden
2008
13460314194003990473
258785230
-1090767881586925080
2298477780
76168461612680198065
11367374
48509574010252242359
43996925
150204389404279837134
15671749
Jacobi-Madden
2008
378573600 145514934 65167315 -201317790 387938059Seiji Tomita
2009
1058103081810535945811334-11401059613259440806526401398023584459Seiji Tomita
2009
75600593267607958148
0132094
25491945779594685472
1610090
64414567706058373954
1816400
-7184716582116907200
60678365
93659940932091945568
2880219
Seiji Tomita
2010
47889177339639353814
221283135714
-6535571193228450354
843506097540
-2648566219395408586
9452902545110
38071142693337417804
472545034525
52939086645794235394
397419527589
Seiji Tomita
2010
-9920529841425116466
28468071089452679223
82794305394
28621756052395468228
99562799473665653544
01483969850
21790201280933421044
86291565186506687683
93853565040
-9566517417742495552
44337690029230422403
04835226765
30924910074161277255
13048603541489239601
07708002731
Seiji Tomita
2009



Simcha Brudno, A further example of A^4 + B^4 + C^4 + D^4 = E^4, Proc. Camb. Phil. Soc. 60 (1964) 1027-1028.

Lee W. Jacobi and Daniel J. Madden, On a^4 + b^4 + c^4 + d^4 = (a+b+c+d)^4, Amer. Math. Monthly 115 (2008) 220-236.

Jaroslaw Wroblewski, Exhaustive list of 1009 solutions to (4,1,4) below 222,000 



HOME