1.Introduction

According to Tito Piezas's website[1], diophantine equation x^4 + y^4 - 1 = z^2 has infinitely many integer solutions below.

By using Fauquembergue's identity (17p^2-12pq-13q^2)^4 + (17p^2+12pq-13q^2)^4 - (17p^2-q^2)^4 = (289p^4+14p^2q^2-239q^4)^2 if q^2-17p^2 = }1.
  
We found other 4 parametric solutions of x^4 + y^4 - 1 = z^2 below, and show it has infinitely many integer solutions.

(2p^2+15pq-4q^2)^4 + (p^2-15pq-8q^2)^4 - (2p^2+9pq+8q^2)^4 = (p^4+66p^3q+17p^2q^2+264pq^3+16q^4)^2

(2p^2+5pq+7q^2)^4 + (4p^2+7pq+5q^2)^4 - (2p^2+5pq+q^2)^4 = (55q^4+94pq^3+95p^2q^2+56p^3q+16p^4)^2

(p^2+7pq+20q^2)^4 + (2p^2+11pq+19q^2)^4 - (p^2+7pq+8q^2)^4 = (535q^4+478pq^3+203p^2q^2+44p^3q+4p^4)^2

(4p^2+19pq+40q^2)^4 + (8p^2+29pq+35q^2)^4 - (4p^2+19pq+13q^2)^4 = (2008q^4+2408pq^3+1455p^2q^2+464p^3q+64p^4)^2

2.Theorem
 
Diophantine equation x^4 + y^4 - 1 = z^2 has infinitely many integer solutions where 2p^2+9pq+8q^2=}1.

x=2p^2+15pq-4q^2
y=p^2-15pq-8q^2
z=p^4+66p^3q+17p^2q^2+264pq^3+16q^4

     
Proof.

Here we treat first identity below.

(2p^2+15pq-4q^2)^4 + (p^2-15pq-8q^2)^4 - (2p^2+9pq+8q^2)^4 = (p^4+66p^3q+17p^2q^2+264pq^3+16q^4)^2..............(1)

Let x=2p^2+15pq-4q^2, y=p^2-15pq-8q^2, z=p^4+66p^3q+17p^2q^2+264pq^3+16q^4.

Hence let 2p^2+9pq+8q^2=}1.....................................................................................(2)

Equation (2) has a solution (p,q)=(1,-1) and D=9^2-64>0, then by Gauss's theorem, we know that equation (2) has infinitely many integer solutions.

Consequently, equation (1) has infinitely many integer solutions.

Similarly, we can say about other identities.

Q.E.D.
@

3.Example

x^4 + y^4 - 1 = z^2 where 2p^2+9pq+8q^2=1 with (p,q)=(1,-1).

[x,y,z]=[1553, 2552,  6944936]
        [6792209, 11141864,  132436310992424]
        [29573306897, 48511703768,  2510640131523668027816]
        [128762171467793, 211219947094472, 47594993329094761637050360616]
        [560630464997494289, 919651601137657784, 902273233367616658143524455962784424]
        [2440984915836918696977, 4004162860133414927528, 17104676998745139105621388965372958884100136]
        [10628047762923479009174033, 17434124173369287456829592, 324258732733788305726932014395972712094239865181096]
        [46274517518783911769025073169, 75908172646687017453621146504, 6147074613676486216516455027030091634006648537678423958824]
        [201479238648737388918856159434257, 330504166269551100623779015079288, 116532023632893519364441690349139444016608357470895068729779801256]
        [877240558802085072568787949151712273, 1439015064029452845428916378034103912, 2209134163064177028082187882153290380155179618758477292141050648181582376]
        


4.Reference

[1]: Tito Piezas, x^4 + y^4 - 1 = z^2





HOME