1.Introduction


I show the collection of parametric solutions for x1^k + x2^k + x3^k = y1^k + y2^k + y3^k where k = 5.


I don't know whether there is a parametric solution that satisfies only k=5 excluding the case of Sastry and Moessner.


2.Parametric solutions
        
     
      
@1. k=5
     
    1.1 Degree 5

      (Sastry)

      x1 = a^5 + 25b^5
      x2 = a^5 - 25b^5
      x3 = 10a^3b^2

      y1 = a^5 + 75b^5
      y2 = a^5 - 75b^5
      y3 = -50ab^4

    1.2 Degree 36

      (Moessner)

      x1 = a^36 + 8a^26 + 12a^16 + 20a^11 - a^6
      x2 = a^30 + 20a^25 - 12a^20 - 8a^10 - 1
      x3 = a^33 - 12a^23 - 28a^13 - a^3

      y1 = a^36 + 8a^26 + 12a^16 - 20a^11 - a^6
      y2 = a^30 - 20a^25 - 12a^20 - 8a^10 - 1
      y3 = a^33 + 28a^23 + 12a^13 - a^3

      
@2. k=1,5
     

   2.1 Degree 7

       (Bremner[1])

      x1 = 75a^7 - 230a^6 - 113a^5 + 510a^4 - 407a^3 + 62a^2 + 125a - 150
      x2 = -75a^7 - 70a^6 + 153a^5 + 54a^4 - 217a^3 + 606a^2 - 245a + 50
      x3 = -175a^7 + 170a^6 - 391a^5 - 30a^4 + 451a^3 - 602a^2 + 115a - 50

      y1 = -25a^7 - 653a^5 + 564a^4 - 195a^3 - 208a^2 + 105a - 100
      y2 = -175a^7 + 160a^6 - 387a^5 + 108a^4 - 5a^3 + 336a^2 - 265a + 100
      y3 = 25a^7 - 290a^6 + 689a^5 - 138a^4 + 27a^3 - 62a^2 + 155a - 150


      (Bremner,Choudhry[2],Tomita[4])

      x1 = 5a^7 + 6a^6 + 51a^5 + 58a^4 + 108a^3 + 96a^2 + 36a + 40
      x2 = 5a^7 - 10a^6 + 39a^5 - 90a^4 + 52a^3 - 160a^2 + 4a - 40
      x3 = -5a^7 + 4a^6 - 39a^5 + 32a^4 - 52a^3 + 64a^2 - 4a

      y1 = -5a^7 - 4a^6 - 39a^5 - 32a^4 - 52a^3 - 64a^2 - 4a
      y2 = 5a^7 - 6a^6 + 51a^5 - 58a^4 + 108a^3 - 96a^2 + 36a - 40
      y3 = 5a^7 + 10a^6 + 39a^5 + 90a^4 + 52a^3 + 160a^2 + 4a + 40

      (Choudhry)

      x1 = -4a^7 - 17a^6 + 45a^5 - 10a^4 + 112a^3 - 124a^2 - 28a - 24
      x2 = 8a^7 + 9a^6 + 57a^5 - 32a^4 - 8a^3 - 68a^2 + 68a + 16
      x3 = 2a^7 + 29a^6 + 45a^5 + 66a^4 + 24a^3 + 156a^2 + 4a + 24

      y1 = 2a^7 - 3a^6 + 45a^5 - 66a^4 + 24a^3 - 164a^2 + 4a + 8
      y2 = -4a^7 + 17a^6 + 33a^5 + 32a^4 + 56a^3 + 60a^2 - 60a + 16
      y3 = 8a^7 + 7a^6 + 69a^5 + 58a^4 + 48a^3 + 68a^2 + 100a - 8


      (Tomita)

      x1 = 100a^7 + 145ba^6 + 243b^2a^5 + 250b^3a^4 + 282b^4a^3 + 165b^5a^2 + 95b^6a
      x2 = 50a^7 + 15ba^6 + 7b^2a^5 - 90b^3a^4 - 32b^4a^3 - 5b^5a^2 + 55b^6a
      x3 = -100a^7 - 135ba^6 - 211b^2a^5 - 176b^3a^4 - 234b^4a^3 - 199b^5a^2 - 175b^6a - 50b^7

      y1 = 50a^7 + 175ba^6 + 199b^2a^5 + 234b^3a^4 + 176b^4a^3 + 211b^5a^2 + 135b^6a + 100b^7
      y2 = -95ba^6 - 165b^2a^5 - 282b^3a^4 - 250b^4a^3 - 243b^5a^2 - 145b^6a - 100b^7
      y3 = -55ba^6 + 5b^2a^5 + 32b^3a^4 + 90b^4a^3 - 7b^5a^2 - 15b^6a - 50b^7

      This identity has a interesting property.
      Let f1(a,b)=x1,f2(a,b)=x2, and f3(a,b)=x3,then y1=-f3(b,a),y2=-f1(b,a),y3=-f2(b,a).


   2.2 Degree 8

      (Bremner)

      x1 = 389a^8 + 1111a^7 + 1599a^6 + 1435a^5 + 897a^4 + 417a^3 + 137a^2 + 29a + 2
      x2 = 123a^8 + 41a^7 + 129a^6 + 421a^5 + 543a^4 + 319a^3 + 87a^2 + 3a - 2
      x3 = 442a^8 + 1647a^7 + 2603a^6 + 2363a^5 + 1275a^4 + 409a^3 + 77a^2 + 13a + 3

      y1 = 272a^8 + 729a^7 + 1425a^6 + 1685a^5 + 1221a^4 + 527a^3 + 135a^2 + 19a + 3
      y2 = 474a^8 + 1655a^7 + 2647a^6 + 2363a^5 + 1263a^4 + 385a^3 + 49a^2 - 3a - 1
      y3 = 208a^8 + 415a^7 + 259a^6 + 171a^5 + 231a^4 + 233a^3 + 117a^2 + 29a + 1


      (Tomita)

      x1 = 2a^8 + a^7 + 20a^6 + 29a^5 + 74a^4 + 84a^3 + 64a^2 + 36a + 40
      x2 = 7a^7 - 8a^6 + 45a^5 - 74a^4 + 44a^3 - 128a^2 + 4a - 40
      x3 = -2a^8 - 3a^7 - 12a^6 - 41a^5 - 84a^3 + 64a^2 + 28a

      y1 = 7a^7 + 8a^6 + 45a^5 + 74a^4 + 44a^3 + 128a^2 + 4a + 40
      y2 = -2a^8 + a^7 - 20a^6 + 29a^5 - 74a^4 + 84a^3 - 64a^2 + 36a - 40
      y3 = 2a^8 - 3a^7 + 12a^6 - 41a^5 - 84a^3 - 64a^2 + 28a


      (Tomita)

      x1 = -a^8 - 5a^7 + 5a^6 - 25a^5 + 70a^4 - 52a^3 + 140a^2 + 44a + 24
      x2 = -3a^8 - a^7 - 17a^6 - 33a^5 - 78a^4 - 52a^3 - 172a^2 - 20a - 24
      x3 = a^8 + 9a^7 + 3a^6 + 49a^5 + 62a^4 + 84a^3 + 116a^2 + 84a - 8

      y1 = -3a^8 - a^7 - 15a^6 - 21a^5 - 4a^4 - 28a^3 - 20a^2 + 76a + 16
      y2 = a^8 - a^7 + 7a^6 - 33a^5 + 54a^4 - 84a^3 + 84a^2 - 20a - 8
      y3 = -a^8 + 5a^7 - a^6 + 45a^5 + 4a^4 + 92a^3 + 20a^2 + 52a - 16






    2.3 Degree 9

      (Choudhry)

      x1 = a - a^3 - 2a^5 + a^9
      x2 = 1 + a^2 - 2a^6 + 2a^7 + a^8
      x3 = 2a^3 + 2a^4 - 2a^7

      y1 = a + 3a^3 - 2a^5 + a^9
      y2 = 1 + a^2 - 2a^6 - 2a^7 + a^8
      y3 = -2a^3 + 2a^4 + 2a^7

      (Lander[3])

      x1 = -2a^8 + 10a^7 + 20a^6 + 20a^5 + 34a^4 - 10a^3 - 270a^2 - 20a - 682
      x2 = 2a^8 + 10a^7 - 20a^6 + 20a^5 - 34a^4 - 10a^3 + 270a^2 - 20a + 682
      x3 = a^9 - 22a^5 - 125a^3 - 79a

      y1 = a^8 + 10a^7 - 10a^6 + 20a^5 - 92a^4 - 160a^3 - 15a^2 - 320a + 341
      y2 = a^9 - 22a^5 + 175a^3 + 521a
      y3 = -a^8 + 10a^7 + 10a^6 + 20a^5 + 92a^4 - 160a^3 + 15a^2 - 320a - 341

      Lander obtained three-parameter solution of degree 9,this example is a special case with (p,q)=(-2,1).

      (Tomita)

      x1 = a^9 + 6a^8 - a^7 - 28a^6 - 53a^5 - 50a^4 - 27a^3 - 8a^2 - a
      x2 = 2a^9 + 2a^8 - 8a^7 - 20a^6 - 20a^5 - 10a^4 - 2a^3
      x3 = -2a^9 - 18a^8 - 48a^7 - 60a^6 - 40a^5 - 14a^4 - 2a^3

      y1 = a^9 - 7a^8 - 49a^7 - 117a^6 - 161a^5 - 147a^4 - 91a^3 - 37a^2 - 9a - 1
      y2 = -3a^9 - 18a^8 - 61a^7 - 108a^6 - 113a^5 - 74a^4 - 31a^3 - 8a^2 - a
      y3 = 3a^9 + 15a^8 + 53a^7 + 117a^6 + 161a^5 + 147a^4 + 91a^3 + 37a^2 + 9a + 1



    2.4 Degree 10

      (Choudhry)

      x1 = 2a^10 + a^9 + 28a^8 + 33a^7 + 154a^6 + 200a^5 + 360a^4 + 372a^3 + 296a^2 + 144a + 160
      x2 = 7a^9 - 8a^8 + 73a^7 - 106a^6 + 224a^5 - 424a^4 + 180a^3 - 552a^2 + 16a - 160
      x3 = -2a^10 - 3a^9 - 20a^8 - 53a^7 - 48a^6 - 248a^5 + 64a^4 - 308a^3 + 256a^2 + 112a

      y1 = 7a^9 + 8a^8 + 73a^7 + 106a^6 + 224a^5 + 424a^4 + 180a^3 + 552a^2 + 16a + 160
      y2 = 2a^10 - 3a^9 + 20a^8 - 53a^7 + 48a^6 - 248a^5 - 64a^4 - 308a^3 - 256a^2 + 112a
      y3 = -2a^10 + a^9 - 28a^8 + 33a^7 - 154a^6 + 200a^5 - 360a^4 + 372a^3 - 296a^2 + 144a - 160

    2.5 Degree 12

      (Tomita)

      x1 = 2a^12 - a^11 + 16a^10 - 11a^9 + 52a^8 + 2a^7 + 40a^6 - 10a^5 + 42a^4 + 15a^3 + 8a^2 + 5a
      x2 = 5a^11 - 8a^10 + 15a^9 - 42a^8 - 10a^7 - 40a^6 + 2a^5 - 52a^4 - 11a^3 - 16a^2 - a - 2
      x3 = -2a^12 + 3a^11 - 8a^10 + 27a^9 - 10a^8 + 50a^7 + 50a^5 + 10a^4 + 27a^3 + 8a^2 + 3a + 2

      y1 = 2a^12 + 3a^11 + 8a^10 + 27a^9 + 10a^8 + 50a^7 + 50a^5 - 10a^4 + 27a^3 - 8a^2 + 3a - 2
      y2 = 5a^11 + 8a^10 + 15a^9 + 42a^8 - 10a^7 + 40a^6 + 2a^5 + 52a^4 - 11a^3 + 16a^2 - a + 2
      y3 = -2a^12 - a^11 - 16a^10 - 11a^9 - 52a^8 + 2a^7 - 40a^6 - 10a^5 - 42a^4 + 15a^3 - 8a^2 + 5a


    2.6 Degree 13

      (Tomita)

      x1 = 2a^12 + 2a^11 - a^10 + 3a^9 + 12a^8 + 4a^7 + a^6 + 13a^5 + 10a^4 + 3a^2 + a
      x2 = -a^12 - a^9 + 2a^8 + 6a^7 + 2a^6 + a^5 + 8a^4 + 6a^3 + a + 1
      x3 = -a^13 - a^12 + a^11 - 2a^10 - 7a^9 - 4a^8 - 5a^7 - 8a^6 - 9a^5 - 6a^4 - 5a^3 - 2a^2 - 1

      y1 = a^12 + 7a^9 + 6a^8 - 2a^7 + 6a^6 + 9a^5 - 2a^3 + a - 1
      y2 = -a^13 - a^12 + a^11 - 2a^10 - 7a^9 + 2a^8 + 3a^7 - 4a^6 - a^5 + 4a^4 + 3a^3 + 2a^2 + 1
      y3 = 2a^11 - a^10 - 5a^9 + 2a^8 + 4a^7 - 7a^6 - 3a^5 + 8a^4 - a^2 + a

    2.7 Degree 14

      (Tomita)

      x1 = 8a^14 - 16a^13 - 4a^12 + 32a^11 - 4a^10 - 32a^9 + 12a^8 + 40a^7 - 2a^6 - 8a^5 + 25a^4 + 16a^3 - 7a^2 - 8a - 2
      x2 = 4a^12 - 20a^10 + 24a^9 + 12a^8 - 48a^7 + 4a^6 + 28a^5 - 17a^4 - 12a^3 + 13a^2 + 10a + 2
      x3 = -8a^14 + 16a^13 + 4a^12 - 32a^11 + 4a^10 + 32a^9 - 12a^8 - 24a^7 + 10a^6 + 8a^5 - 13a^4 + 11a^2 + 4a

      y1 = 8a^13 - 12a^12 + 12a^10 + 4a^8 - 8a^7 + 4a^6 + 30a^5 + 15a^4 + 12a^3 + 21a^2 + 12a + 2
      y2 = -8a^13 + 12a^12 + 16a^11 - 36a^10 - 8a^9 + 36a^8 - 8a^7 - 36a^6 - 6a^5 - 3a^4 - 24a^3 - 23a^2 - 10a - 2
      y3 = 4a^12 - 16a^11 + 4a^10 + 32a^9 - 28a^8 - 16a^7 + 44a^6 + 4a^5 - 17a^4 + 16a^3 + 19a^2 + 4a





3.References

      1. A. Bremner, A geometric approach to equal sums of fifth powers,J. Number Theory, 13 (1981).

      2. Ajai Choudhry, On equal sums of fifth powers,Indian J. pure appl. Math., 28(1997)

      3. L.J.Lander,Geometric aspects of diophantine equations involving equal sums of powers,
         Amer. Math. Monthly 75 (1968)

      4. The parametric solution for equal sums of fifth powers


     
  
       





 














HOME