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Consider the below mentioned equations:

at+b*+ct+dt+et+kx (NP = (D ———--(4)
Fork = 1,2,3,4,5,6,7,89
a*+b*+ct+kxr(@P= () ————-—— (B)

Fork=2378&9

Abstract: Different authors have done analysis regarding sums of powers (Ref. no. 1,2 & 3), but
systematic approach for solving Diophantine equations having sums of many bi-quadratics equal to a
quartic has not been done before. In this paper we give methods for finding numerical solutions to
equation (A) given above in section one. Next in section two, we give methods for finding numerical
solutions for equation (B) given above. As is known that finding parametric solutions to biquadratic
equations is not easy by conventional method. So the authors have found numerical solutions to
equation (A) & (B) using elliptic curve theory.
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Summary:

Previously research has been done by others, for Sum of bi-quadratics equal to a bi-quadratic.
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R. Carmichael gave the below mentioned identity for (k+2) bi-quadratics where k=4,
(a* = 2bH* + (2a3b)* + 4 * 2ab®)* = (a* + 2b*H)*

Also equation ( a + k * b*=c* + k = d*), for k=4 , has been investigated by Ajai Choudhry in his
paper, but our paper is different, because of our paper’s requirement, that the right hand side of our
above equations (A) &(B)

need’s to be equal to a quartic. But to-date the authors have not found any publications which deal
systematically, with the subject of (k + n) bi-quadratics, where (n=3, 5). We have, numerical solutions
where k>9, but the authors are going to deal with solutions for k=1,2,3,4,5,6,7,8,9 for (k+5)
bi-quadratics and for k=2,3,7,8,9 for (k+3) bi-quadratics . Mention of k=4 & 6 is not made in section
two because k=4 & 6 has elliptic curve, with rank zero, hence has no rational integer solutions. K=5 is
omitted in the latter because it has alluded solution by our method. Also k=1 is omitted because a
solution has been given by Jacobi & Madden in their paper on the equation,

(a,b,c,d)*=(a+b+c+d)*
Section one:

Equation A*+B*+ C*+D*+E*+ k=« F*=G* has infinitely many integer solutions for
k=1,2,3,4,5,6,7,8,9.

Proof.
A*+B*+ C*+ D"+ E* + k*x F* =G oo, )]
LetA=c*x*+d,B=exx+f,C=sxr,D=txr,E=uxr,F=r,
G=a%X24D i e e e e (2)

Consider the equation,
rtx(st+tt+ut+k)=(G*—A*—BY e e .. (3)

G*—A*—B*=(ax?+b)* — (cx?+d)* — (ex + f)*

= (8 + 8x +32x3)"2 for [a,b,c,d, e f] = [4,3,4,—1,4,—2], So Right hand side is a square and we
need to make the left hand side of equation (3) [r* * (s* +t* + u* + k)] a square, for suitable
values of (s,t,u) & (K)

We have below equation (A)
A*+B*+C*+ D*+E*+k+F*=G*
Equation for, k=1:
A*+B*+C*+D*+E*+F*=G*
Let [s,t,u]=[19, 17, 11] and [a,b,c,d,e,f]=[4, 3, 4, -1, 4, -2],
equation (3) above , becomes
—4(=239r2 + 4 + 4x + 16x3)(2397% + 4 + 4x + 16x3) = 0.
Hence —239r? + 4+ 4x + 16x3 = 0 or
23912 + 4 + 4x + 16x3 = 0.
Let us find the rational solution of
—23972 4 44+ 4x + 16X3 = 0 eee e ees oo e (4)



X
Substitute x = ﬁand "= 114242

Y2 = X3 +228484X + 218430704 ... cov cvveev eveeereereet vt enrene e enns (5)
The elliptic curve Y? = X3 + 228484X + 218430704 has rank 1.
Refer to the elliptic curve tables mentioned in the reference section:

to equation (4), then we obtain

The point (X,Y) on the elliptical curve above = (580,23368),leads to below.
26979% + 24378% + 221996* + 198628* + 128524* + 11684* = 255463*%

We have, A*+B*+C*+D*+E*+k+F*=(G*

Equation for, k=2.
A*+B*+C*+D*+E*+2xF*=G*

Let [s,t,u]=[7, 3, 2] and [a,b,c,d,e,f]=[4, 3, 4, -1, 4, -2],
Equation (3) becomes,
—4(=257% + 4 + 4x + 16x3) * (251% + 4 + 4x + 16x3) = 0.
In the same way with k=1, let us find the rational solution of
=251+ 4 +4x + 16x3 = 0........ (6)
Let us transform equation (6) to elliptic curve (7).
Y2 = X3 44X 4 16 s )
The elliptic curve eqgn.(7) has rank 1.
The point (X, Y) = (1/4, -33/8) leads to below mentioned numerical solution.

General Note: The elliptical equations in section one & two are all having rank one. Since the points
(X,Y) on the elliptical curves are rational points, by Nagell-Lutz theorem the elliptical curves will all
have points of infinite order.

315* + 560* + 924* + 396* + 264* + 2% 132* = 965*
A*+B*+ C*+D*+ E* + 2% F* = G* - (72)
Additional method for ‘k’=2
Consider the above equation (7a) for (k+5) quartics,
For k=2, there is a numerical solution for the above namely,
(6,10,16,32,29)* + 2 x (12)* = (37)*
[since (6+10=16)]
Example of parametric solution for above for k=2, meaning (a+b=c) is given below:



(6n*—20n — 16)* + (—16n? — 12n = 10)* + (—10n? —32n — 6)* + 32* » (n® + n + 1)* + 29*
s(MP4+n+1)*+ 2« (*+n+1)*= (37n* +37n + 37)*

Where ‘n’ is a parameter.
(ab,c,d,e)* +2x(f)* = g*

As is known (a+b=c) implies ((a, b, (a + b))*= 2 = (a® + ab + b?)?, hence equation (1) above can
be parametrized when (a,b) is known.

Since (a,b,c)* = 2(a? + ab + b?)? = [g* —d* —e* — k = (f)*]

We have, A*+ B* + C*+ D*+ E*+ k » F* = G*
Equation for, k=3.
A*+B*+C*+D*+E*+3+xF*=G*

Let [s,t,u]=[5, 4, 2] and [a,b,c,d,e,f]=[4, 3, 4, -1, 4, -2],
Equation (3) becomes to
—4(157% + 4 + 4x + 16x3) * (=157 + 4 + 4x + 16x3) = 0.
Let us find the rational solution of (= 1572 + 4 + 4x + 16x3)=0 ..ccccooevvvrvierierrcrrcrnns (8)
Let us transform equation (8) to elliptic curve (9).
Y2 = X34 900X 4 54000 ..o e )
The elliptic curve equation (9) has rank 1.
The point (X, Y) = (34, -352) leads to below.
16* + 15* + 220* + 176* + 88* + 3 = 44* = 241*

A*+B*+C*+D*+E*+ k+F*=G*
Equation for, k=4.

A*+B*+C*+D*+E*+4xF*=G*

Let [s,t,u]=[70, 30, 20] and [a,b,c,d,e,f]=[4, 3, 4, -1, 4, -2],
Equation (3) becomes ,

—4(24997r2 4 4 + 4x + 16x3) * (—24997r2 + 4 + 4x + 16x3) = 0.
Let us find the rational solution of

—249912 4+ 44+ 4x +16x3 =0 oo, (10)
Let us transform equation (10) to elliptic curve eqgn.(11).
Y2 = X34 10404X + 2122416 wcovveerereeecreeeeeee e, (11)

The elliptic curve (11) has rank 1.
The point (X, Y) = (474, 10656) leads to below.
10416* + 3689* + 10360* + 4440* + 2960* + 4 = 148* = 12439*




We have, A*+B*+C*+D*+E*+kx*F*=G*
Equation for, k=5.
A*+B*+C*+D*+E*+5%F*=G*
Let [s,t,u]=[11, 7, 5] and [a,b,c,d,e,f]=[4, 1, 4, -1, 4, 0],
Equation (3) becomes,
8 x (47r% + 2x — 8x3) x (47r? — 2x + 8x3) =0.
Let us find the rational solution of 4772 4+ 2x — 8x3=0........cccceecerrrerrrrernnne. (12)
Let us transform equation (12) to elliptic curve egn.(13).
Y2 = X3 —2200X oot s (13)
The elliptic curve (13) has rank 1.
The point (X, Y) = (684407232/2289169, 17682275119320/3463512697)
leads to below numerical solution.

206807355454175* + 66669098675328* + 133221414581640* + 84777263824680*
+ 60555188446200* + (5) * 12111037689240* = 217287944875297*

Next we have, A*+B*+C*+D*+E*+ k+*F*=G*
Equation for, k=6.
A*+B*+C*+D*+E*+6+F*=G*

Let [s,t,u]=[37, 31, 11] and [a,b,c,d.e,f]=[4, 3, 4, -1, 4, -2],
Equation (3) becomes,
—(—1677r% + 8 + 8x + 32x3) * (1677r% + 8 + 8x + 32x3) = 0.
Let us find the rational solution of —1677r2 + 8 4+ 8x +32x3 = 0 ..ccceovvvevrrerercnennn, (14)
Let us transform equation (14) to elliptic curve (15).
Y2 = X3 4+ 44997264X + 603683293824 ..cooveveveeeeieeeeeee s (15)
The elliptic curve (15) has rank 1.
The point (X, Y) = (1720, 828352) leads to below.
1421* + 2262* + 4144* + 3472* + 1232* + 6« 112* = 4663*
A*+B*+C*+D*+E*+ k+F*=G*
Equation for, k=7.
A*+B*+C*+D*+E*+ 7+ F*=G*
Let [s,t,u]=[5, 3, 2] and [a,b,c,d,e,f]=[4, 3, 4, -1, 4, -2],
Equation (3) becomes,
—(27r% + 8 + 8x + 32x3)(—27r? + 8 + 8x + 32x3)=0.
Let us find the rational solution of
=272+ 8+ 8x +32x3=0 oo, (16)
Let us transform equation (16) to elliptic curve (17).



Y2 = X3 4 144X 4 3456 oo (17)
The elliptic curve (17) has rank 1.
The point (X, Y) = (4, -64) leads to below.

6*+ 9%+ 20* + 12* + 8*+ 7 x 4* = 21*

We have, A*+B*+C*+D*+E*+k+F*=G*

Equation for, k=8.
A*+B*+C*+D*+E*+8x+F*=(G*

Let [s,t,u]=[4, 3, 2] and [a,b,c,d,e,f]=[4, 3, 4, -1, 4, -2],
Equation (3) becomes,

—(—=19r% + 8 + 8x + 32x3) * (1972 + 8 + 8x + 32x3) =0.
Let us find the rational solution of

—1972 + 8+ 8x +32x3=0 oo, (18)
Let us transform equation (18) to elliptic curve (19).
Y2 = X3 4 5776X 4 877952 oo (19)
The elliptic curve egn.(19) has rank 1.
The point (X, Y) = (-16316/225, -941248/3375) leads to below.

409346* + 17856675* + 3529680* + 2647260* + 1764840* + 8 » 882420* = 17866279*

We have, A*+B*+C*+D*+E*+ k+*F*=G*

Equation for, k=9.
A*+B*+C*+D*+E*+9xF*=G*

Let [s,t,u]=[12, 10, 6] and [a,b,c,d.e,f]=[4, 3, 4, -1, 4, 2],
Equation (3) becomes,

—(179r? — 8 4+ 8x + 32x3) x (—179r2 — 8 + 8x + 32x3) = 0.
Let us find the rational solution of -179r"2-8+8x+32X"*3=0 ........ccccecvrvvrvvrernrnnns (20)
Let us transform equation (20) to elliptic curve egn.(21).
Y2 = X3+ 512656X — 734123392 ..o (21)
This elliptic curve egn. (21) has rank 1.
The point (X, Y) = (569670529240635121336/10878607024914721,
13598002320735074871580564215680/1134644815597146377458481)
leads to below numerical solution. (22)




632907528785561577532579698212415075*
+17547363660052143402393127334645814*
+132793539889388930571722711937075840*
+110661283241157442143102259947563200*
+66396769944694465285861355968537920*
+9 % 11066128324115744214310225994756320*
= 633380905148771673201251847502446439*

Section Two: (k+3) quartic’s

Equation (B) is given below,

Wehave, A*+B*+C*+k*«D*=FE* . .. ..., (1D
Let A=cx*+d,B=ex+f,C=sr,D=r,E=ax*+b ... 2
Hence we get the equation,
7k (5 k) = (E* — A* = BY) oo, 3)

G*—A*—B*=(a*x>+b)*—(c*xx?+d)*—(exx+ f)*
= (8+8x +32x%)? for [a,b,c,d, e f] = [4,3,4,—1,4,—2], So Right hand side is a square and we
need to make the left hand side of equation (3) [r* * (s* + k)] a square, for suitable values of (s) &
(k)
Section Two:
Regarding the (k+3) quartic equation given below

For k=2,

(a,b,0)* + k*d* =e* - (B)
For k=2, the Identity is given below,

@* +¢)*"= @ — )"+ Qp* + ()* + 2+ (N*

The above after simplification has the condition:

3r? = 2pq(p* —q*) — —— —(0)
Solution is (p,q,r.s) = (2,1,2,4)
The above, equation (B) has the elliptical equation,

Y2 =X = (X?- 36)

And it has rank one, hence equation (A) has infinite solutions for k=2.
Numerical solution is:
(4,3,0)*+ 2+ (2)* = (5)*
The point (X, Y) = (25/4, 35/8) leads to below numerical solution,
49* + 280* + 1200* + 2 = 140* = 1201*



The author’s have noted that there are parametric solutions for k= 14,46,49,63,94 where (k)<100. For
(k+3) quartics. Those have the condition (a+b=c). Namely (a, b, c)* + k * (d)* = e*

We have, A*+B*4+C*+ k*D*=E*

Equation for, k=3.
A*+B*+C*+3+D*=F*

Let [a,b,c,d,e,fs]=[4, 3,4, -1, 4, 2, 1/2],
Equation (3) becomes,

1
o (7r? + 32— 32x — 128x3) * (7r? — 32 + 32x + 128x3) = 0.

Let us find the rational solution of

7r?2+32—32x—128x3 =0 .ceevcrrrrerern (6)
Let us transform equation (6) to elliptic curve eqn.(7).
Y2 = X3 4 784X — 43904 ..ooovvveveerereereereeeeeeeeee s, (7

The elliptic curve eqgn. (7) has rank 1.
The point (X, Y) = (36, 176) leads to below.
8%+ 56% + 11* + 3 % 22% = 574
Next we have, A*+B*+C*+k+D*=F*
Equation for, k=7.
A*+B*+C*+7+D*=E*

When [a,b,c,d,e,fs]=[4, 1, 4, -1, 4, 0, 47],
Equation (3) becomes,

8(781r2 + 2x — 8x3) = (781r% — 2x + 8x3) = 0.
Let us find the rational solution of

78112 +2x —8x3 = 0ecevvveeeece, (8)

Let us transform equation (8) to elliptic curve eqn.(9).

Y2 = X3 = 609961X ..oooovoeeeeeeeeeeeeeseeees e (9)

The elliptic curve (9) has rank 1.

The point (X, Y) = (-2876843001196439/4324112302500,

-94873842643707990383059/8991775327433625000) leads to below.
5129496674953832213892839* + 31856062007258755695495000*
+ 15201651200677671668018850* + 7 * 323439387248461099319550*
= 32266397734309870798607161*




We have, A*+ B*+C*+ k+D*=E*
Equation for, k=8.
A*+B*+C*+8+D*=F*

Let [a,b,c.de,fs]=[4,3,4,-1,4,-2,239/13],

Equation (3) becomes,

1
28561

Let us find the rational solution for,

—571237r2% + 1352 + 1352x + 5408x3 = 0............. (10)

Let us transform equation (10) to elliptic curve (11).

Y2 = X3 +18409008087184X + 157970349293290458496 ........... (12)
The elliptic curve equation (11) has rank 1.

The point (X, Y) = (2088556756/1369, 697479284591232/50653) leads to below.

136268507232% + 201049446673* + 483363968776% + 8 * 26291763992%
= 4876940403374

A*+B*+C*+ k+«D*=E*

* (—57123r? + 1352 + 1352x + 5408x3) = (5712372 + 1352 + 1352x + 5408x3) = 0.

Equation for, k=9.
A*+B*+C*+9xD*=E*

When [a,b,c,d.e fs]=[4, 3,4, -1, 4, 2, 2],
Equation (3) becomes,
—(=5r2 —8+8x +32x3) * (5v2 — 8 + 8x + 32x3) = 0.

Let us find the rational solution of ,

—5r2 =8+ 8x +32x3 = 0uevereree, (12)
Let us transform equation (12) to elliptic curve egn.(13).
Y2 = X3 4 400X — 16000.........cccoomrerrrernrerersreseerierisneenens (13)

This elliptic curve egn.(13) has rank 1.
The point (X, Y) = (164, -2112) leads to below.
414* + 115* + 264* + 9 = 132* = 4394

Similarly we also have numerical solutions for (k+5) quartics, in which C=(A+B)
A*+B*+C*+D*+E*+k+F*=G*
Hence,
A*+B*+ (A+B)*+D*+E*+ k«F*=G*



(a,b,0)* +kxd*=e* - (A).
Regarding the above equation (A), for the case (¢ = a + b).
Consider the below mentioned identity for (k = 4)and with the
condition (c = a+ b).Letk = (m)? = (2)> =4

(2p* —2¢*)* + (2% + 4p)* + (2p* +4p)* + (4) * (p* + pq + ¢*)*
= [6 * (p* +pq + q*)*]?

The right hand side of the above equation is equal to 36 times a fourth power and
hence cannot be made a fourth power.

Regarding the case k = (m)?, m=1,2,3,4,5,6 has no known solutions with the

condition (c=a+b). But there is a solution for m=7, meaning ‘k’= (m)? = (7)? = 49
Consider the below equation for (k+5) quartics,
(a,b,c,d,e)*+ (k) * ()*= (g)* - (A)
For k=5, there is a numerical solution for the above namely,

(4,22,26,7,28)* + 5 * (14)* = (35)*

[since (4+22=26)]
Example of parametric solution for k=5, for (a+b=c) is given below:

(=26n?—44n+ 4)* + (22n2 —8n—26)*+ (4n? +52n+22)* + 5« (n®> +n + 1)*
= (35n2 + 35n + 35)*

Where ‘n’ is a parameter.

There are parametric solutions for k= 14,46,49,63,94 where (k)<100. For (k=3) quartics. These have
the condition (a+b=c). Namely (a, b,c)* +k * (d)* = e* --------- (1)

As is known (a=b=c) implies ((a,b, (a + b))*= 2 * (a® + ab + b?)?, hence equation (1) above can
be parametrized when (a,b) is known.

Since (a,b,c)* = 2(a® + ab + b?)? = e* — k x (d)*
Example of parametric solution for k=14 is given below:
Numerical solution for above is (4,11,15)* + 14 = (1)* = 16*, (a+b=c) implies in above (4+11=15)

See below for more numerical solutions regarding (k+3) & (k+5) quartics,

for k=1,2,3,4,5,6,7,8 & 9



Table (1) Numerical solutions to (k+3) equation given below,
a* +b* +c* + k* (d)* = (e)*
For k=1,2,3,4,5,6,7,8 & 9

k a b c d* e

1 30 120 272 315 353
2 49 280 1200 140 1201
3 2 4 7 6 9

4 34 10 5 14 35

5 69 40 40 94 143
6 455 280 142 170 483
7 4 4 1 2 5

8 3 2 2 22 37

9 15 14 6 34 59

(*) means (d*) needs multiplication by value of ‘k’

Conclusion:

The authors have provide d method’s for finding numerical solutions for (k+3) & (k+5) quartic
equation for k = (1,2,3,4,5,6,7,8 & 9) . Except for the case of (k=4,5,6) for the (k+3) quartic equation
it is an open question and others can attempt to find solution by a different method.

Table (2) Numerical solutions for (K+5) quartic equation given below:
For k=1,2,3,4,5,6,7,8 &9
at+b*+ct+dt +et +kx ()= (g)*

k a b c d e f* g

1 6 8 18 31 32 34 43
2 2 6 8 13 20 4 21
3 4 5 6 8 10 8 13
4 10 12 14 15 20 2 23
5 3 4 6 8 14 6 15
6 1 8 12 14 16 4 19
7 2 10 18 19 24 28 47
8 4 5 8 10 18 6 19




9 8 18 27 42 48 10 55
(*) means (f*) needs to be multiplied by value of (K)

Conclusion:

The authors have provided method’s for finding numerical solutions for (k+5) quartic equation for k =
(1,2,3,4,5,6,7,8 & 9). Also the authors have provided solutions for (k+3) quartic equation for (k+3)
equation for k=2,3,7,8&9, and for the case of (k=4,5,6) it is an open question and others can attempt
to find solution by a different method.

REFERENCES

[1] Andrew Bremner & M. Ulas, International journal of number theory, vol. 7, number. 8 (2011),
pages.2081-2090
[2] N.D. Elkies on sum of three quartics equal to a quartic, Math computation 51, (184), 1988, pages
825-835
[3] J.H. Silverman: a) Rational points on elliptic curves, b) Arithmetic of elliptic Curves, Springer
1992
[4] Crenome’s & Steinwatkins tables for elliptic curves
[5] Computer software: Pari, Maple & Magma
[6] Elliptic curves tables: http://www. Imfdb.org
[7] Published math paper, Oliver Couto & Seiji Tomita, ), Sum of three biquadratics
a multiple of a n th power, Universal Journal of applied mathematics, Vol. (4)(1),
pages 22-31,2016, http://www.hrpub.org
[8] Published math paper, Oliver Couto & Seiji Tomita, Generalized parametric solution to multiple
sums of powers, Universal Journal of applied mathematics, In press, Jan 2016, Volume 3(5),
http://www.hrpub.org
[9] Published math paper, Oliver Couto & Seiji Tomita, Solution of Polynomial Equation of any
degree 'n’ with Special Emphasis For n= (2, 3, 4, 5 & 6), Journal “SOP transactions on applied
mathematics” ISSN (Print): 2373-8472, July 2015. http://www.scipublish.com/journals/am

[10] Published math paper, Oliver Couto, Taxicab Equations for power (2, 3, 4 & 5), Journal,
International Math  Forum, Hikari Itd,, Vol.9, Jan 2014.n0.12, pages 561-577.
http;//www.m-hikari.com/imf.html

[11] Seiji Tomita, personal webpagehttp://www.maroon.dti.ne.jp/fermat Web site on “Computation
number theory”

[12] Oliver Couto, personal webpage, http://www.celebrating- mathematics.com Web site on
“Number theory Math”

[13] Ramanujan lost notebook, Narosa publishing house, New Delhi, India

[14] Euler Leonhard, Opera Omnia books, 1984 publication.

[15] Tito Piezas-Online collection algebraic identities,http://sites.google.com/site/tpiezas

[16] Ajai Choudhry, Diophantine equations, Journal of mathematics, Rocky mountain journal vol. 34,
no.4, winter (2004), page1261-1298.

[17] Jaroslaw Wroblewski , Tables of Numerical solutions for degree three, four, six, Seven & nine,
website www.math.uni.wroc.pl/~jwr/eslp

[18] L. E. Dickson, history of the theory of numbers, Vol. Il, (Diophantine analysis), Chelsea
publication, year 2000


http://www.celebrating-/




